Synthese und Reaktivität von Dienylmetall-Verbindungen

XXXIII *. Die Koordination von ER_2 (E = S, Se, Te) in kationischen Cyclopentadienylmolybdän-Komplexen

Norbert Kuhn *, Hans Schumann und Edgar Zauder

Fachbereich 6 (Chemie) der Universität (GH) Duisburg, Lotharstr. 1, D-4100 Duisburg 1 (B.R.D.) (Eingegangen den 15. April 1988)

Abstract

 $C_5H_5Mo(CO)_3I$ reacts with AgBF₄ in the presence of EMe₂ (E = S, Se, Te) to give the cations $[C_5H_5Mo(CO)_3(EMe_2)]^+$ (I). The dicarbonyl cations $[C_5H_5Mo(CO)_2(EMe_2)_2]^+$ (II) are obtained as mixtures of the *cis* and *trans* isomers, the latter predominating, after the oxidation of $(C_5H_5Mo(CO)_2)_2$ with $[(C_5H_5)_2Fe]BF_4$ in the presence of EMe₂. $[C_5H_5Mo(CO)_2(SMe_2)_2]^+$ (IIa) dimerises on heating to give the SMe₂-bridged dication $[(C_5H_5Mo(CO)(\mu-SMe_2))_2]^{2+}$ (III) whereas attempts to prepare the analogous $S(t-C_4H_9)_2$ complex lead to the tetracarbonyl complex $[(C_5H_5Mo(CO)_2)_2(\mu-S(t-C_4H_9)_2)]^{2+}$ (IV).

Zusammenfassung

 $C_5H_5Mo(CO)_3I$ reagiert mit AgBF₄ in Gegenwart von EMe₂ (E = S, Se, Te) zu den Kationen $[C_5H_5Mo(CO)_3(EMe_2)]^+$ (I). Die Dicarbonyl-Kationen $[C_5H_5Mo(CO)_2(EMe_2)_2]^+$ (II) werden durch Oxidation von $(C_5H_5Mo(CO)_2)_2$ mit $[(C_5H_5)_2$ -Fe]BF₄ in Gegenwart von EMe₂ als Gemische der *cis*- und *trans*-Isomeren erhalten, wobei das letztere überwiegt. $[C_5H_5Mo(CO)_2(SMe_2)_2]^+$ (IIa) dimerisiert beim Erwärmen unter Bildung des SMe₂-verbrückten Dikations $[(C_5H_5Mo(CO)(\mu-SMe_2))_2]^{2+}$ (III) während Versuche zur Synthese des analogen S(t-C₄H₉)₂-Komplexes zum Tetracarbonyl-Komplex $[(C_5H_5Mo(CO)_2)_2(\mu-S(t-C_4H_9)_2)]^{2+}$ (IV) führen.

Einleitung

Die Koordinierung von Dimethylchalkogeniden EMe_2 ($Me = CH_3$; E = S, Se, Te) [1] an Cyclopentadienylmetall-Fragmente führt zu den Komplexkationen

^{*} XXXII. Mitteilung vgl. Lit. 7.

 $[C_5H_5M(EMe_2)_2L_m]^{n+}$ (M = Fe, m = 1, n = 1 [2,3]; M = Co, m = 0, n = 0 [4]; M = Ni, m = 0, n = 1 [5]) und $[C_5H_5M(EMe_2)_3]^{n+}$ (M = Fe, n = 1 [6,7]; M = Co, n = 2 [8]), die sich durch die substitutionslabile Gruppierung M(EMe_2)_2 gut als Ausgangsmaterialien in der koordinationschemischen Synthese eignen. Die im Vergleich zur entsprechenden Chemie des Eisens, Cobalts und Nickels [9,10] geringe Zahl an kationischen Cyclopentadienylmolybdän-Komplexen [10,11] veranlaßte uns zur Untersuchung der Koordination von EMe₂ (E = S, Se, Te) in Kationen des Typs $[C_5H_5Mo(CO)_{4-n}(EMe_2)_n]^+$ (n = 1, 2).

Ergebnisse

Die Koordination von EMe_2 an Cyclopentadienylmetall-Fragmente erfordert koordinativ ungesättigte oder stark substitutionslabile Ausgangskomponenten, die üblicherweise in situ präpariert werden [2–8]. Zur Synthese der Titelverbindungen bot sich zunächst der leicht zugängliche Iodokomplex $C_5H_5Mo(CO)_3I$ an.

Die photochemische Umsetzung von $C_5H_5Mo(CO)_3I$ mit EMe₂ ist wegen umfangreicher Nebenreaktionen, die zu cyclopentadienylfreien Produkten führen, zum Aufbau von C_5H_5Mo -Komplexen wenig geeignet. Hingegen eröffnet die Iodid-Abstraktion aus $C_5H_5Mo(CO)_3I$ mittels AgBF₄ in Gegenwart äquivalenter Mengen an EMe₂ einen gangbaren Weg zur Synthese der Tricarbonyl-Komplexe $[C_5H_5Mo(CO)_3(EMe_2)]BF_4$ (I, E = S, Se, Te). Allerdings reduziert die in einer Nebenreaktion erfolgende Bildung von EMe₂-Komplexen des Silbers vor allem für E = Se und Te die Ausbeute der Zielverbindung und erfordert zur Gewinnung von analysenreinen Produkten mehrfache fraktionierte Umkristallisation.

Wie auch für die Substanzklasse $[C_5H_5Fe(CO)_2EMe_2]^+$ [2] beobachtet, ist der Einfluß des Chalkogen-Donoratoms E auf die chemische Verschiebung der Cyclopentadienyl-Signale in den Kernresonanzspektren von I gering (vgl. Tabelle 1), jedoch läßt sich die zunehmende Abschirmung des beobachteten Kerns beim Übergang vom Thioether-Komplex Ia zu den Verbindungen der schwereren Gruppennachbarn erwartungsgemäß beobachten. Kein einheitlicher Trend ergibt sich jedoch bei Betrachtung der gewichteten Mittelwerte für die Verschiebung der CO-Gruppen in I (E = S 226.28; Se 224.48; Te 225.03 ppm), die zudem ebenfalls nur eine sehr geringe Differenzierung zeigen. Wie erwartet führt der gegenüber CO stärkere Donorcharakter von EMe₂ zu einer relativen Entschirmung des zu EMe₂ *trans*-ständigen Carbonyl-Liganden, hier von ca. 5 ppm.

Der Austausch einer CO-Gruppe gegen einen weiteren EMe_2 -Liganden läßt sich wegen der Labilität der C_5H_5Mo -Bindung in I weder unter thermischen noch unter photochemischen Bedingungen kontrolliert durchführen. Hingegen führt die oxidierende Spaltung der Mo-Mo-Dreifachbindung in $(C_5H_5Mo(CO)_2)_2$ [12] durch Ferricenium-Salze [13] in Gegenwart von EMe_2 in guten Ausbeuten zu den Dicarbonyl-Kationen $[C_5H_5Mo(CO)_2(EMe_2)_2]^+$ (II), die hierbei als Gemische der *cis*und *trans*-Isomeren IIA und IIB anfallen. Diese lassen sich nicht präparativ trennen, jedoch eindeutig spektroskopisch identifizieren.

Die Zuordnung der Signale im NMR-Spektrum wird durch folgende Überlegung möglich:

Die Inversion am Chalkogenatom koordinierter Liganden ER₂ erfolgt für E = Se und Te bei Raumtemperatur langsam im Sinne der NMR-Zeitskala [14] und führt deshalb zur Aufspaltung der Signale für R, wenn die erforderlichen Symmetriebedingungen erfüllt sind [15]; dies ist bei IIB, nicht jedoch bei IIA der Fall. Hieraus ergibt sich, daß bei den Komplexen IIb und IIc der jeweils intensitätsschwächere Satz an Signalen (ca. 30%) den *cis*-Isomeren IIb zuzuordnen ist. Im Falle des Sulfan-Komplexes $[C_5H_5Mo(CO)_2(SMe_2)_2]^+$ (IIa) ist neben dem Hauptprodukt in geringem Anteil (ca. 5%) eine zweite Komponente gleichen Signalmusters in den NMR-Spektren sichtbar, die wir dementsprechend dem *cis*-Isomeren von IIa zuordnen.

Ein Blick auf die NMR-Daten von II (Tab. 1) zeigt zunächst im wesentlichen die erwartete Hochfeldverschiebung für C_5H_5 und CH_3 in der Reihe S, Se, Te, jedoch überrascht für IIc die Umkehr dieser Folge bei den CO-Gruppen. Ein Vergleich der *cis-* und *trans*-Isomeren weist den letzteren jeweils die zu hohem Feld verschobenen Signale zu.

Wie erwartet führt der Übergang von den Tricarbonyl-Komplexen I zu den entsprechenden Dicarbonyl-Kationen II durch die steigende Elektronendichte am Komplexzentrum zur Hochfeldverschiebung der Signale für C_5H_5 und CH_3 in II, jedoch sind auch hier die Unterschiede gering und sollten in ihrer Interpretation nicht überbewertet werden. Deutlich jedoch sichtbar ist die parallel hierzu erfolgende Entschirmung der Carbonylgruppen.

⁷⁷Se- und ¹²⁵Te-NMR-Daten von EMe₂-Komplexen (E = Se, Te) haben sich wegen der starken Abhängigkeit der chemischen Verschiebung vom Metallzentrum [3,6] als empfindliche Sonden erwiesen, obwohl bislang keine einheitliche Interpretation der Werte vorliegt. Wie auch bei entsprechenden Cyclopentadienyleisen-Komplexen sichtbar [3,6] wird der betrachtete Kern E in den EMe₂-Komplexen I und II (E = Se, Te) jeweils mit steigender Elektronendichte am Koordinationszentrum entschirmt (vgl. Tabelle 1); für das Isomerengemisch von [C₅H₅Mo(CO)₂-(TeMe₂)₂]⁺ (IIc) haben wir nur ein verbreitertes Singulett bei 193.0 ppm beob-

Tabelle 1	Tal	bell	le	1
-----------	-----	------	----	---

NMR-Daten der Komplexe I bis IV (δ (ppm))^{*d*}

Verbindung		¹ H-NMR		¹³ C-NMR		
		$\overline{C_5H_5}$	CH ₃	$\overline{C_5H_5}$	CH ₃	СО
$[C_5H_5MO(CO)_3(SMe_2)]BF_4$		6.23	2.73	96.63	28.24	224.83 cis
(Ia)						229.17 trans
$[C_5H_5Mo(CO)_3(SeMe_2)]BF_4^{-b}$		5.93	2.56	95.56	11.17	224.45 cis
(Ib)						228.96 trans
$[C_5H_5Mo(CO)_3(TeMe_2)]BF_4$		5.85	2.42	94.39	- 5.78	223.79 cis
(Ic)						227.5 trans
$[C_5H_5Mo(CO)_2(SMe_2)_2]BF_4$	А	5.93	2.43	95.63	26.76	244.69
(IIa)	В	_ /	_ <i>f</i>	96.05	27.59	242.29
$[C_5H_5Mo(CO)_2(SeMe_2]BF_4^{d}]$	Α	5.7	2.47	94.60	17.16	244.82
(IIb)	В	5.9	2.53, 2.80	95.90	15.46, 21.98	_ /
$[C_5H_5Mo(CO)_2(TeMe_2)_2]BF_4$	$^{e}\mathbf{A}^{-}$	5.4	2.33	91.99	-7.06	240.68
(IIc)	В	5.57	2.4, 3.07	91.74	-6.91, -7.94	231.76
$[(C_5H_5Mo(CO)(SMe_2))_2](BF_4)$	$)_{2}^{8}$	6.26	3.66	96.73	46.92	227.50
(III)	-					
$[(C_5H_5Mo(CO)_2)_2(SR_2)](BF_4)$ (IV), R = t-C ₄ H ₉) ₂ ^g	6.47	1.63	55.17	34.31	217.24

^{*d*} In CD₂Cl₂. ^{*b*-77}Sc-NMR: 41.0 ppm. ^{*c*-125}Tc-NMR: 89.3 ppm. ^{*d*-77}Sc-NMR: 9.1 und 39.5 ppm. ^{*e*-125}Te-NMR: 193 ppm. ^{*f*} Nicht beobachtet. ^{*g*} In CD₃NO₂.

achtet. Der für strukturanaloge organische und anorganische Selen- und Tellurverbindungen beschriebene lineare Zusammenhang zwischen ⁷⁷Se- und ¹²⁵Te-NMR-Verschiebungen [16] wird, wie auch in anderen EMe₂-Komplexen, auch hier nicht beobachtet, was wir als Hinweis auf eine paramagnetisch beeinflußte Verschiebung werten.

 $t-Bu = C(CH_3)_3$

Sämtliche hier untersuchten Komplexe der Typen $[C_5H_5Mo(CO)_3EMe_2]^+$ (I) und $[C_5H_5Mo(CO)_2(EMe_2)_2]^+$ (II) sind thermisch wenig stabil; während die Zersetzung der selen- und tellurhaltigen Verbindungen offenbar durch die Spaltung der C_5H_5Mo -Bindung initiiert wird, führt die bereits an anderer Stelle diskutierte Destabilisierung des Fragments $M(SMe_2)_2$ [7] in Ha zur Abspaltung von SMe_2 unter Bildung des von uns auch durch Alkylierung der Thiolatbrücken in $(C_5H_5Mo(CO)(SMe))_2$ [17] erhaltenen Dikations $[(C_5H_5Mo(CO)(\mu-SMe_2))_2]^{2+}$ (III). Die hohe Bildungstendenz dieser Verbindung wird hier durch die unerwartete Dimerisierung zweier kationischer Komplexfragmente unterstrichen. III ist auch durch Thermolyse von Ia erhältlich.

Die Synthese von III läßt sich, ausgehend von $(C_5H_5Mo(CO)_2)_2$ nach o.gen. Schema auch als "Eintopfreaktion" durchführen. Die Verwendung von $S(t-C_4H_9)_2$ an Stelle von SMe_2 verhindert hierbei, vermutlich aus sterischen Gründen, die Ausbildung der zweiten SR_2 -Brücke, sodaß die Reaktion auf der hier stabilen Zwischenstufe $[(C_5H_5Mo(CO)_2)_2(\mu-S(t-C_4H_9)_2]^{2+}$ (IV) stehenbleibt. Diese Verbindung haben wir auch als einziges nachweisbares Produkt bei Versuchen zur Synthese monokationischer Komplexe analog zu I und II mit $S(t-C_4H_9)_2$ -Liganden erhalten.

Experimenteller Teil

Sämtliche Arbeiten wurden in gereinigten Lösungsmitteln unter Argon durchgeführt. EMe₂ (E = Se, Te) [18], $C_5H_5Mo(CO)_3I$ [19] und $(C_5H_5Mo(CO)_2)_2$ [12] wurden nach Literaturvorschriften erhalten. Die in Tab. 1 angegebenen ⁷⁷Seund ¹²⁵Te-NMR-Verschiebungen beziehen sich auf EMe₂ als Standard.

1. $[C_5H_5Mo(CO)_3(SMe_2)]BF_4$ (Ia)

 $0.37 \text{ g} (1 \text{ mmol}) \text{ C}_5 \text{H}_5 \text{Mo}(\text{CO})_3 \text{I}$ in 10 ml CH₂Cl₂ werden mit 0.073 ml (1 mmol) SMe₂ versetzt und nach Zugabe von 0.20 g (1 mmol) AgBF₄ über Nacht bei Raumtemperatur gerührt. Der nach Filtrieren in 50 ml Ether resultierende Niederschlag wird abfiltriert und mehrfach mit Ether gewaschen. Ausbeute nach mehrfacher Umkristallisation aus CH₂Cl₂/Ether: 0.36 g (91% d. Th.), gelbbraune Kristalle. Gef.: C, 30.2; H, 2.4; Mo, 25.5. C₁₀H₁₁BF₄MoO₃S ber.: C, 30.48; H, 2.81; Mo, 24.35%.

2. $[C_5H_5Mo(CO)_3(SeMe_2)]BF_4$ (Ib)

0.11 g (1 mmol) SeMe₂, sonst wie unter 1. Ausbeute: 0.23 g (57% d. Th.), gelbbraune Kristalle. Gef.: C, 26.8; H, 2.3; Mo, 22.0. $C_{10}H_{11}BF_4MoO_3Se$ ber.: C, 27.34; H, 2.51; Mo, 21.76%.

3. $[C_5H_5Mo(CO)_3(TeMe_2)]BF_4$ (Ic)

0.16 g (1 mmol) TeMe₂, sonst wie unter 1. Ausbeute: 0.19 g (39% d. Th.), gelbbraune Kristalle. Gef.: C, 23.8; H, 1.9; Mo, 19.5. $C_{10}H_{11}BF_4MoO_3Te$ ber.: C, 24.53; H, 2.26; Mo, 19.60%.

4. $[C_5H_5Mo(CO)_2(SMe_2)_2]BF_4$ (IIa)

0.43 g (1 mmol) $(C_5H_5Mo(CO)_2)_2$ in 20 ml CH_2Cl_2 werden mit 0.18 ml (2.5 mmol) SMe₂ versetzt und nach Zugabe von 0.52 g (1.9 mmol) $[(C_5H_5)_2Fe]BF_4$ 10

min bei Raumtemperatur gerührt. Der nach Filtrieren in 100 ml Ether entstandene Niederschlag wird abfiltriert, mehrfach mit Ether gewaschen und im Vakuum getrocknet. Ausbeute nach Umkristallisation aus $CH_2Cl_2/Ether: 0.80$ g (93% d. Th.), gelbbrauner Feststoff. Gef.: C. 30.5; H, 3.7: Mo, 23.2. $C_{11}H_{17}BF_4MoO_2S_2$ ber.: C, 30.86; H, 4.00; Mo, 22.41%.

5. $[C_5H_5Mo(CO)_2(SeMe_5)_2]BF_4$ (IIb)

0.27 g (2.5 mmol) SeMe₂, sonst wie unter 4. Ausbeute: 0.93 g (89% d. Th.), gelbbrauner Feststoff. Gef.: C, 24.7: H, 3.0; Mo, 19.3. $C_{11}H_{17}BF_4MoO_2Se_2$ ber.: C, 25.31; H, 3.28; Mo, 18.38%.

6. $[C_5H_5Mo(CO)_2(TeMe_2)_2]BF_4$ (IIc)

0.39 g (2.5 mmol) TeMe₂, sonst wie unter 4. Ausbeute: 1.07 g (86% d. Th.), gelbbraune Kristalle. Gef.: C, 21.7; H, 2.6; Mo, 15.0. $C_{11}H_{17}BF_4MoO_2Te_2$ ber.: C, 21.34; H, 2.77; Mo, 15.49%.

7. $[C_5H_5Mo(CO)(\mu-SMe_2))_2](BF_4)_2$ (III)

0.86 g (2 mmol) Ha werden in 10 ml 1,2-Dichlorethan 2 h unter Rückfluß erhitzt. Der hierbei entstandene Niederschlag wird abfiltriert, mehrfach mit CH_2Cl_2 gewaschen und im Vakuum getrocknet. Ausbeute nach Umkristallisation aus Nitromethan/Ether: 0.38 g (56% d. Th.), grüner Feststoff. Gef.: C, 27.76; H, 3.11; Mo, 28.5. $C_{16}H_{22}B_2F_8Mo_2O_2S_2$ ber.: C, 28.09; H, 3.25; Mo, 28.05%.

8. $[(C_5H_5Mo(CO)_2)_2(\mu-SR_2)](BF_4)_2$ (IV, $R = t-C_4H_9$)

0.43 g (1 mmol) $(C_5H_5Mo(CO)_2)_2$ in 30 ml CH_2Cl_2 werden mit 0.58 g (4 mmol) $S(t-C_4H_9)_2$ versetzt und nach Zugabe von 0.52 g (1.9 mmol) $[(C_5H_5)_2Fe]BF_4$ über Nacht bei Raumtemperatur gerührt. Der entstandene Niederschlag wird abfiltriert, mehrfach mit CH_2Cl_2 gewaschen und im Vakuum getrocknet. Ausbeute nach Umkristallisation aus Nitromethan/Ether: 0.49 g (65% d. Th.), dunkelrote Kristalle. Gef.: C, 34.6; H, 3.3; Mo, 26.5. $C_{22}H_{28}B_2F_8Mo_2O_4S$ ber.: C, 35.04; H. 3.74; Mo. 25.45%.

Dank

Diese Arbeit wurde von der Deutschen Forschungsgemeinschaft, vom Fonds der Chemischen Industrie sowie von der Studienstiftung des Deutschen Volkes unterstützt. Wir danken Herrn Prof.Dr. P. Sartori für sein freundliches Interesse an unserer Arbeit.

Literatur

- Übersicht: S.G. Murray und F.R. Hartley, Chem. Rev., 81 (1981) 365; C.G. Kuehn und S.S. Isied, Prog. Inorg. Chem., 27 (1980) 153; H.J. Gysling in S. Patai und Z. Rappoport (Hrsg.). The chemistry of organic selenium and tellurium compounds, Vol. 1, John Wiley & Sons, Chichester, 1986.
- 2 N. Kuhn und H. Schumann, J. Organomet. Chem., 276 (1984) 55.
- 3 N. Kuhn, H. Schumann und E. Zauder, J. Organomet. Chem., 327 (1987) 17.
- 4 N. Kuhn und E. Zauder, Veröffentlichung in Vorbereitung.
- 5 N. Kuhn und M. Winter, Chem.-Ztg., 107 (1983) 73; N. Kuhn und M. Winter, J. Organomet. Chem., 249 (1983) C28.

- 6 N. Kuhn, H. Schumann, M. Winter und E. Zauder, Chem. Ber., 121 (1988) 111.
- 7 N. Kuhn und E. Zauder, J. Organomet. Chem., 340 (1988) C1.
- 8 N. Kuhn, H. Brüggemann, M. Winter und V.M. de Bellis, J. Organomet. Chem., 320 (1987) 391.
- 9 Gmelin Handbook of Inorganic Chemistry, Fe Organoiron Compounds, Vol. B11/12, Springer Verlag, Heidelberg 1983/84.
- 10 G. Wilkinson (Hrsg.), Comprehensive Organometallic Chemistry, Pergamon Press, Oxford, 1982.
- 11 Gmelin Handbook of Inorganic Chemistry, Mo Organomolybdenum Compounds, Springer Verlag, Heidelberg 1988, im Druck.
- 12 M.D. Curtis und R.J. Klingler, J. Organomet. Chem., 161 (1978) 23; D.S. Ginley, C.R. Bock und M.S. Wrighton, Inorg. Chim. Acta, 23 (1977) 85.
- 13 H. Schumann, Chem.-Ztg., 108 (1984) 239, 345; R.G. Sutherland, M. Iqubal und A. Piorko, J. Organomet. Chem., 302 (1986) 307.
- 14 E.W. Abel, S.K. Bhargava und K.G. Orrell, Prog. Inorg. Chem., 32 (1984) 1; N. Kuhn und H. Schumann, Inorg. Chim. Acta, 116 (1986) L11.
- 15 W.B. Jennings, Chem. Rev., 75 (1975) 307.
- 16 H.C.E. McFarlane und W. McFarlane, J. Chem. Soc., Dalton Trans., (1973) 2416.
- 17 N. Kuhn, E. Zauder, R. Boese und D. Bläser, J. Chem. Soc., Dalton Trans., im Druck.
- 18 N. Kuhn, P. Faupel und E. Zauder, J. Organomet. Chem., 302 (1986) C4.
- 19 Analog zu E.W. Abel, A. Singh und G. Wilkinson, J. Chem. Soc., (1960) 1321.